三角函数的傅立叶变换

三角函数的傅立叶变换,第1张

在频域中是离散形式。

傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

相关定义

1、傅里叶变换属于谐波分析。

2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。

3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。

4、卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段。

—傅里叶变换

跟一维信号处理一样,傅里叶变化,把图像从“空域”变为“频率”。对于一幅图像,高频部分代表了图像的细节、纹理信息;低频部分代表了图像的轮廓信息。如果对一幅精细的图像使用低通滤波器,那么滤波后的结果就剩下了轮廓了。这与信号处理的基本思想是相通的。如果图像受到的噪声恰好位于某个特定的“频率”范围内,则可以通过滤波器来恢复原来的图像。

通过飞秒检测发现傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。

f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,

②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做

F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。

用正弦曲线来代替原来的曲线而不用方波或三角波来表示的原因在于,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

为什么 偏偏选择三角函数而不用其他函数进行分解?我们从物理系统的特征信号角度来解释。我们知道:大自然中很多现象可以抽象成一个线性时不变系统来研究,无论你用微分方程还是传递函数或者状态空间描述。线性时不变系统可以这样理解:输入输出信号满足线性关系,而且系统参数不随时间变换。对于大自然界的很多系统,一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。也就是说正弦信号是系统的特征向量!当然,指数信号也是系统的特征向量,表示能量的衰减或积聚。自然界的衰减或者扩散现象大多是指数形式的,或者既有波动又有指数衰减(复指数形式),因此具有特征的基函数就由三角函数变成复指数函数。但是,如果输入是方波、三角波或者其他什么波形,那输出就不一定是什么样子了。所以,除了指数信号和正弦信号以外的其他波形都不是线性系统的特征信号。

用正弦曲线来代替原来的曲线而不用方波或三角波或者其他什么函数来表示的原因在于:正弦信号恰好是很多线性时不变系统的特征向量。于是就有了傅里叶变换。对于更一般的线性时不变系统,复指数信号(表示耗散或衰减)是系统的“特征向量”。于是就有了拉普拉斯变换。z变换也是同样的道理,这时是离散系统的“特征向量”。这里没有区分特征函数和特征向量的概念,主要想表达二者的思想是相同的,只不过一个是有限维向量,一个是无限维函数。

傅里叶级数和傅里叶变换其实就是我们之前讨论的特征值与特征向量的问题。分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。这样,用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。且只有正弦曲线才拥有这样的性质。

这也解释了为什么我们一碰到信号就想方设法的把它表示成正弦量或者复指数量的形式;为什么方波或者三角波如此“简单”,我们非要展开的如此“麻烦”;为什么对于一个没有什么规律的“非周期”信号,我们都绞尽脑汁的用正弦量展开。就因为正弦量(或复指数)是特征向量。

姓名:宫松涛

学号:19021210927

嵌牛导读傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。所以这篇文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。

嵌牛提问如何理解傅里叶变换?

嵌牛正文

一、什么是频域

从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。

先举一个 公式上并非很恰当 ,但意义上再贴切不过的例子:

在你的理解中,一段音乐是什么呢?

这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:

好的!下课,同学们再见。

是的,其实这一段写到这里已经可以结束了。上图是音乐在时域的样子,而下图则是音乐在频域的样子。所以频域这一概念对大家都从不陌生,只是从来没意识到而已。

现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。

将以上两图简化:

时域:

频域:

在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。

所以

你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。

抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。

而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。

离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。

中文名

离散傅里叶变换

外文名

discreteFourier transform

时域信号

离散时间傅里叶变换

计 算

快速傅里叶变换

应用学科

通信

特 点

傅里叶、离散

冒泡~十二月啦!艰难的十一月总算是熬过去,十二月希望少熬一点吧(不可能)。

题外话:傅里叶变换讲道理应该是大一高数就学习,然而当时的老师因为考试不考就放弃了教学,于是乎现在的我学起来真是恶补的痛苦

傅里叶变换实质涉及的是频域函数和时域函数的转换。

a先引入时域和频域这两个概念的解释。

时域是真实世界,是惟一实际存在的域。 可以这样理解,从我们出生开始,所接触的这个世界就是随着时间在变化的,是在运动的。

频域它不是真实的,而是一个数学构造。 如果说时域是惟一客观存在的域,那么频域是一个遵循特定规则的数学范畴,频域也被一些学者称为上帝视角。结合上面对时域的理解,如果时域是运动永不停止的,那么频域就是静止的。

正弦波是频域中唯一存在的波形,这是频域中最重要的规则, 即正弦波是对频域的描述,因为频域中的任何波形都可用正弦波合成

通过来直观解释:

在时域里面,一段音乐是什么?是一个随着时间变化的震动(我们可以观察到钢琴的琴弦一会上一会下的摆动)。

相比较,在频域里面,一段音乐又是什么?是一个个音符,是乐谱。音符的个数是有限且固定的,但可以组合出无限多的乐曲。

b接下来再讲解两个概念 :频谱和相位谱

对比展示:

频谱只代表了一个正弦函数的幅值,而要准确描述一个正弦函数,我们不仅需要幅值,还需要相位,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。

频谱的重点是侧面看,相位谱的重点则是从下面看。

为什么需要傅里叶变换?

如下图所示:上面我们能看到的仅仅是一个类似正弦波的波形,其幅值在按照一定的规律变化。如何记载这个波形的信息呢尤其是量化的记载!是很困难的。那么这个时候引入傅里叶变换就可以得到一个频谱(幅值谱),主要包括3、5、7、9次谐波,一目了然!

参考( https://blogcsdnnet/qq_33414271/article/details/79117586 )

( https://ww2mathworkscn/help/matlab/math/fouriertransformshtml#responsive_offcanvas )

Ending~在自我理解的基础上完成了资料的搬运是很不容容易了!

十二月加油鸭!

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://www.hunlipic.com/langman/3203165.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-08-13
下一篇2023-08-13

发表评论

登录后才能评论

评论列表(0条)

    保存