数学家小时候的数学故事,最好是在100字以内,

数学家小时候的数学故事,最好是在100字以内,,第1张

陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”

沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学皇冠上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)。

女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。

17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。

数学会女前辈高扬芝

高扬芝(1906-1978 ),江西南昌人,从小学习勤奋,特别喜欢数学。

高中毕业后考入北京大学数学系,由于学习成绩优秀,1930年大学毕业后应聘到上海大同大学担任数学教员,后成为教授、数学系主任。在课堂教学中,她遵循《学记》中所说的:“善歌者使人继其声,善教者使人继其志。”所以,高扬芝的数学教学一贯是兢兢业业、讲求实效,深受学生欢迎。

高扬芝长期从事数学分析(旧时叫高等微积分)、高等代数和复变函数等课程的教学与研究。她深知,高等数学比初等数学更加抽象,外行人常常把它看成是由冷酷的定义、定理、法则统治着的王国。因此,高教授常常告诉学生,数学结构严谨,证明简洁,蕴含着数学的美。它像一座迷宫,只要你潜心学习、研究,就能寻求到走出迷宫的正确道路。一旦顺利走出迷宫,成功的愉悦会使你兴奋不已,你会向新的、更复杂的迷宫挑战,这就是数学的魅力。

她在上海大同大学工作不到五年的时间里,自身潜在的科研天赋很快被唤醒催发。经过刻苦钻研教材,结合教学实践,她撰写出论文《Clebsch氏级数改正》,1935年在交通大学主编的《科学通讯》上连载,得到同行好评。解放后,她又著有《极限浅说》《行列式》等科普读物多部。

高扬芝是中国数学会创始时的少数女性前辈之一。1935年7月25日中国数学会在上海交通大学图书馆举行成立大会,共有33人出席,高扬芝就是其中的一位。在这次年会上,她被推选为中国数学会评议会评议,后连任第二、三届评议会评议。1951年8月,中国数学会在北京大学召开了规模空前的第一次全国代表大会,高扬芝出席了大会。她是这次到会代表63人中惟一的女代表。20世纪60年代,她被选为江苏省数学会副理事长。

第一位数学女博士徐瑞云

徐瑞云,1915年6月15日生于上海,1927年2月考入上海著名的公立务本女中读书。徐瑞云从小喜欢数学,读中学时对数学的兴趣更加浓厚,因此,1932年9月高中毕业后报考了浙江大学数学系。当时,浙大数学系的教授有朱叔麟、钱宝琮、陈建功和苏步青。此外,还有几位讲师、助教。数学系的课程主要由陈建功和苏步青担任。当时数学系的学生很少,前一届两个班学生共五人,她这届也不过十几人。

当时苏步青才30岁,看上去十分年轻,因此徐瑞云的同学中有人认为苏步青是助教,可是听完一堂课后就不住地赞叹说:“想不到助教竟能讲得这么好。”这件事引起知情者的哄笑。徐瑞云在陈建功和苏步青的教导下,勤奋学习,专心听讲,认真做笔记,她的考试成绩经常是满分。1936年7月,徐瑞云以优异成绩毕业了,被浙大数学系留校任助教。1937年2月,26岁的徐瑞云与28岁的生物系助教江希明喜结伉俪。新婚三个月后,徐瑞云夫妇获得亨伯特留学德国的奖学金,双双乘船漂洋赴德国留学,攻读博士学位。

徐瑞云有幸被德国著名的数学大师卡拉凯屋独利接受,由他担任她的数学博士指导老师。当时有不少学生想请他作导师,他都没有同意。而徐瑞云这位东方女士因学习勤奋,数学功底扎实,成了卡拉凯屋独利的关门弟子。徐瑞云主要研究三角级数论。这门学科起源于物理学的热传导问题的傅里叶分析的主要部分,是当时国际上研究的热门之一,在中国还是一个空白。

徐瑞云为将来能在分析、函数论方面赶上世界先进水平,废寝忘食,广撷博采,把大部分时间都用在图书馆里。1940年底,徐瑞云获得博士学位,成了中国历史上第一位女数学博士。她的博士论文“关于勒贝格分解中奇异函数的傅里叶展开”,1941年发表在德国《数学时报》上。

完成学业的徐瑞云夫妇,随即离德回国,于1941年4月回到母校,双双被聘为副教授,正式登上在战火硝烟的大后方培养人才的讲台。在艰苦的条件下,陈建功和苏步青没有中断在杭州时共创的函数论和微分几何两个数学讨论班,这是一种教学相长、遴选英彦的科研形式,徐瑞云也参与其间。1944年11月,英国驻华科学考察团团长李约瑟参观了浙大数学系和理学院,连声称赞道:“你们这里是东方的剑桥!”这更加激励了徐瑞云的勤奋工作。她这时教的学生曹锡华、叶彦谦、金福临、赵民义、孙以丰、杨宗道等,后来都成了杰出的数学家和数学教育家。1946年,31岁的徐瑞云提升为正教授。

1952年,徐瑞云调入浙江师院,被任命为数学系主任,从此全身投入了艰苦的创建数学系的工作中。在她的领导下,没有几年功夫,数学系已初具规模,教学质量不断提高。第一届本科毕业生约有三分之一考取了研究生。他们系也成为全国同行的楷模,进入全国同行前列。徐瑞云在建设数学系的同时,没有忘记科学研究。她翻译了苏联那汤松的名著《实变函数论》。译本于1955年由高等教育出版社出版。

华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。

此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。

从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。

1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。

晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁

回答者:lionel_future - 兵卒 一级 7-20 10:13

中国古代数学家--祖冲之

他的家庭,从曾祖父起,大都对天文、历法和数学很有研究。祖冲之从小就阅读了许多天文和数学方面的书籍,勤奋好学,刻苦实践,亲自观察天象,进行推算,终于使他成为中国古代杰出的数学家和天文学家。 在汉以前,中国一般用三作为圆周率数值,即

中国古代数学家-墨子 科学家小时候勤奋学习故事 中国古代名人故事

教育故事>>名人故事:中国科学家 中国古代数学家-墨子 中国古代数学家-墨子 中国基础教育网 墨子[公元前468-376年] ,名翟,战国时期鲁国人,他是中国古代一位著名的学者。他创立了墨家学派,倡兼爱学说,《墨经》并非墨子一人所着,但书

中国古代数学家-刘徽

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位他的杰作《九章刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代

数学家华罗庚小时候的轶事

华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚。

华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格。勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺。

金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子。一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少?

陈景润:小时候,教授送我一颗明珠

20多年前,一篇轰动全中国的报告文学《哥德巴赫猜想》,使得一位数学奇才一夜之间街知巷闻、家喻户晓。在一定程度上,这个人的事迹甚至还推动了一个尊重科学、尊重知识和尊重人才的伟大时代早日到来。他的名字叫做陈景润。

不善言谈,他曾是一个“丑小鸭”。通常,一个先天的聋子目光会特别犀利,一个先天的盲人听觉会十分敏锐,而一个从小不被人注意、不受人欢迎的“丑小鸭”式的人物,常常也会身不由己或者说百般无奈之下穷思冥想,探究事理,格物致知,在天地万物间重新去寻求一个适合自己的位置,发展自己的潜能潜质。你可以说这是被逼的,但这么一“逼”往往也就“逼”出来不少伟人。比如童年时代的陈景润。陈景润1933年出生在一个邮局职员的家庭,刚满4岁,抗日战争开始了。不久,日寇的狼烟烧至他的家乡福建,全家人仓皇逃入山区,孩子们进了山区学校。父亲疲于奔波谋生,无暇顾及子女的教育;母亲是一个劳碌终身的旧式家庭妇女,先后育有12个子女,但最后存活下来的只有6个。陈景润排行老三,上有兄姐、下有弟妹,照中国的老话,“中间小囡轧扁头“,加上他长得瘦小孱弱,其不受父母欢喜、手足善待可想而知。在学校,沉默寡言、不善辞令的他处境也好不到哪里去。不受欢迎、遭人欺负,时时无端挨人打骂。可偏偏他又生性倔强,从不曲意讨饶,以求改善境遇,不知不觉地便形成了一种自我封闭的内向性格。人总是需要交流的,特别是孩子。禀赋一般的孩子面对这种困境可能就此变成了行为乖张的木讷之人,但陈景润没有。对数字、符号那种天生的热情,使得他忘却了人生的艰难和生活的烦恼,一门心思地钻进了知识的宝塔,他要寻求突破,要到那里面去觅取人生的快乐。所谓因材施教,就是通过一定的教育教学方法和手段,为每一个学生创造一个根据自己的特点充分得到发展的空间。

小小陈景润,自己对自己因材施教着。

一生大幸,小学生邂逅大教授但是,他毕竟还是个孩子。除了埋头书卷,他还需要面对面、手把手的引导。毕竟,能给孩子带来最大、最直接和最鲜活的灵感和欢乐的,还是那种人与人之间的、耳提面命式的,能使人心灵上迸射出辉煌火花的交流和接触。所幸,后来随着家人回到福州,陈景润遇到了他自谓是终身获益匪浅的名师沈元。

沈元是中国著名的空气动力学家,航空工程教育家,中国航空界的泰斗。他本是伦敦大学帝国理工学院毕业的博士、清华大学航空系主任,1948年回到福州料理家事,正逢战事,只好留在福州母校英华中学暂时任教,而陈景润恰恰就是他任教的那个班上的学生。

大学名教授教幼童,自有他与众不同、出手不凡的一招。针对教学对象的年龄和心理特点,沈元上课,常常结合教学内容,用讲故事的方法,深入浅出地介绍名题名解,轻而易举地就把那些年幼的学童循循诱入了出神入化的科学世界,激起他们向往科学、学习科学的巨大热情。比如这一天,沈元教授就兴致勃勃地为学生们讲述了一个关于哥德巴赫猜想的故事。

师手遗“珠“,照亮少年奋斗的前程

“我们都知道,在正整数中,2、4、6、8、10,这些凡是能被2整除的数叫偶数;1、3、5、7、9,等等,则被叫做奇数。还有一种数,它们只能被1和它们自身整除,而不能被其他整数整除,这种数叫素数。“

像往常一样,整个教室里,寂静地连一根绣花针掉在地上的声音都能听见,只有沈教授沉稳浑厚的嗓音在回响。

“二百多年前,一位名叫哥德巴赫的德国中学教师发现,每个不小于6的偶数都是两个素数之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13反反复复的,哥德巴赫对许许多多的偶数做了成功的测试,由此猜想每一个大偶数都可以写成两个素数之和。”沈教授说到这里,教室里一阵骚动,有趣的数学故事已经引起孩子们极大的兴趣。

“但是,猜想毕竟是猜想,不经过严密的科学论证,就永远只能是猜想。”这下子轮到小陈景润一阵骚动了。不过是在心里。

该怎样科学论证呢?我长大了行不行呢?他想。后来,哥德巴赫写了一封信给当时著名的数学家欧勒。欧勒接到信十分来劲儿,几乎是立刻投入到这个有趣的论证过程中去。但是,很可惜,尽管欧勒为此几近呕心沥血,鞠躬尽瘁,却一直到死也没能为这个猜想作出证明。从此,哥德巴赫猜想成了一道世界著名的数学难题,二百多年来,曾令许许多多的学界才俊、数坛英杰为之前赴后继,竞相折腰。教室里已是一片沸腾,孩子们的好奇心、想像力一下全给调动起来。

“数学是自然科学的皇后,而这位皇后头上的皇冠,则是数论,我刚才讲到的哥德巴赫猜想,就是皇后皇冠上的一颗璀璨夺目的明珠啊!”

沈元一气呵成地讲完了关于哥德巴赫猜想的故事。同学们议论纷纷,很是热闹,内向的陈景润却一声不出,整个人都“痴”了。这个沉静、少言、好冥思苦想的孩子完全被沈元的讲述带进了一个色彩斑斓的神奇世界。在别的同学啧啧赞叹、但赞叹完了也就完了的时候,他却在一遍一遍暗自跟自己讲:

“你行吗?你能摘下这颗数学皇冠上的明珠吗?”

一个是大学教授,一个是黄口小儿。虽然这堂课他们之间并没有严格意义上的交流、甚至连交谈都没有,但又的确算得上一次心神之交,因为它奠就了小陈景润一个美丽的理想,一个奋斗的目标,并让他愿意为之奋斗一辈子!多年以后,陈景润从厦门大学毕业,几年后,被著名数学家华罗庚慧眼识中,伯乐相马,调入中国科学院数学研究所。自此,在华罗庚的带领下,陈景润日以继夜地投入到对哥德巴赫猜想的漫长而卓绝的论证过程之中。

1966年,中国数学界升起一颗耀眼的新星,陈景润在中国《科学通报》上告知世人,他证明了(1+2)!

1973年2月,从“文革“浩劫中奋身站起的陈景润再度完成了对(1+2)证明的修改。其所证明的一条定理震动了国际数学界,被命名为“陈氏定理”。不知道后来沈元教授还能否记得自己当年对这帮孩子们都说了些什么,但陈景润却一直记得,一辈子都那样清晰。

名人成长路

陈景润(1933-1996),当代著名数学家。1950年,仅以高二学历考入厦门大学,1953年毕业留校任教。1957年调入中国科学院数学研究所,后任研究员。1973年发表论文《大偶数表为一个素数及一个不超过二个素数的乘积之积》。1979年,论文《算术级数中的最小素数》问世。1980年当选为中国科学院学部委员(中国科学院院士)

论文我不会写,给你找了点资料,看看。

李泽厚判定:中华文明的源头是原始巫术/原始宗教。那不对。因为原始巫术之前,肯定还有一个上古原始数学文明的时间段——原始巫术时期驱邪祈福的人们,对杀了几头羊、几个人领舞等“数学问题”,早已烂熟于心了。

∴从最严格的“时间点”角度看,中华文明的源头=第一个智慧人学会/发明“数数(123……)”的那个瞬间。“数数”之后,就是“记数+识数+算数”。

从次严格的“时间段”角度看,中华文明的源头=发明/创立了最原始的 “数数、记数、识数、算数”之学(上古原始数学)的那个时间段。

推而广之,可得如下二个公理:

公理一:人类任何古文明的源头都是上古原始数学。没有上古原始数学的地方/国度,就不存在古文明。上古原始数学是宗教、哲学、文学艺术和科学之母。一句话,上古原始数学是百科之母(简称数学是百科之母)。

公理二:任何古文明的古代数学(都)=上古数学+下古数学。不同文明,“上下”的时间分界点不同。上古数学和下古数学当然都可细分。比如,中国的上古数学可分为上古原始数学+夏数学+商数学+周数学。

对中华文明来说,以《易经(周易)》诞生的那一天为界,中国的古代数学=(《易经》前的)上古数学+(《易经》到明朝的)下古数学。

下面开始“速写”中国古代数学的整体面貌及其巨大价值。

一)吴文俊杨振宁与下古数学

中国现代数学史上,大数学家亲自下大功夫研究中国古代数学的,可能只有吴文俊一人。

吴文俊说:“我这辈子最得意的事,就是对中国古代数学的研究。中国古代数学着重解方程,解决各式各样的问题,着重计算,这是不同于外国数学的,这种算法式的数学,是计算机时代最适合、最现代化的数学。”

吴文俊开启了中国(下古)数学史研究的新阶段,不得不让全世界重新认识中国古代数学的巨大价值。他最重要的研究结论是:中国古代(下古)数学与希腊演绎式数学相并行,是数学发展的另一条主流。

如果艺术一下吴文俊的研究结论,那就用俞平伯在《红楼梦辨》中评价林黛玉和薛宝钗的话好了——“双峰对峙,二水分流; 各尽其妙,莫能上下。”

然而,吴文俊的研究结论,就是在中国,都没几个人知道,外国就别说了。这是1840至今中国“精英”文化自卑引发的文化自残乃至文化自宫的又一个缩影。

杨振宁在“2004文化高峰论坛”做过一个著名演讲——《易经》对中华文化的影响。其核心观点是:易经和中华文化里有归纳法无演绎法。该演讲,在中国文化界和科技界引起重大反响,对国外文化界和科技界如何“立论”研究并判定中国文化和中国科技史,影响也一定会非常大。(演讲可能与间接回答李约瑟难题有关……)

注意,从吴文俊“中国古代(下古)数学与希腊演绎式数学相并行”这句结论可以看出,吴文俊也认为中国下古数学没有演绎法。杨振宁和吴文俊那么杰出的大脑,都认为中国下古数学没有演绎法,诺!

问题是:中国的上古数学有没有演绎法?

“上古数学母”有二个鼎鼎有名的“儿子”,一个是历法,一个是中医。

衍生问题一:夏朝之前的天皇氏时就发明了干支和干支历,其后是夏历、商历、周历……中国历史上一共产生过102部历法。如果没有演绎法,能制定出那么精确的历法吗?

衍生问题二:如果中医典籍中不存在演绎法的“清泉”,那研究中医理论多年的钱学森,为什么会判定中医是超前科学?

只有二种可能。一是上古数学没有演绎法,二是有演绎法却在夏商周文化断代中失传了。

(二)赵致生与上古数学

夏传子家天下。夏商周的上古时代,图谋“家天下万岁”的政治原因(天子可以垄断任何好东西秘传为家天下万岁服务)+战争(流血的政治)原因,导致夏商周文化的断代——断掉了上古数学和中医理法等许多精华,连非常成熟的甲骨文都彻底断掉/废除了。

夏商周断代工程(我国“九五”重点课题,1996516开题,2000915结题)——组织了历史学、考古学、文献学、古文字学、历史地理学、天文学和测年技术学等领域的170名重量级研究人员联合攻关,旨在研究和排定中国夏商周时期的确切年代,为研究中国五千年文明史(远不止5000年)创造条件。

非常不幸的是,夏商周断代工程的研究人员里,没有研究中国古代数学的顶级专家,违反了数学是百科之母的公理,研究成果肯定不完美。

非常幸运的是,赵致生(在民间)坐了40年冷板凳挖掘/还原了上古数学的大框架。他还把《易经》前的中国上古历史分为“磊石结绳+河图洛书+天圆地方+周天历度”四个时代/四个阶段(对中国远不止五千年文明史的上古史,给出一种分期和研究框架)。

上古数学(赵致生命名为属性数学)大框架=太极+阴阳+三焦+四象+五行+六气+七阶+八卦+九宫。这是《易经》前的中华超级智者乃至有超级特异功能者发明的一整套认识世界和改造世界的数学方法论,却因夏商周文化断代,造成“三焦+七阶+九宫”等数学方法论/理法失传了3000多年。

赵致生的文章证明,中国的上古属性数学有演绎法。或然率推理用的就是演绎法。或然率推理=从(全息的)多种可能性中,最终推理出一个唯一的必然性事件。

∵数学是百科之母∴上古数学方法论失传的后果极其严重——对《易经》后下古时代的所有学问,都造成或大或小的缺失。

比如,目前的《中医基础理论》大学教科书里,关于“中医的哲学/理法基础”部分,只有阴阳五行,没有/失传了“三焦+四象+六气+七阶+八卦+九宫”。 即使是“五行”,同上古数学的五行相比,也存在巨大差异。作为“六腑”之一的“三焦”,只有《黄帝内经》里的“上焦如雾,中焦如沤,下焦如渎。”这12个字到底是什么意思,至今莫衷一是。

尽管中医基础理法残缺不全了3000多年,中医在2003抗非典和2020抗新冠病毒的战役中,疗效>>西医。如果把失传的上古数学理法“还给”中医,中医会有多牛,连阿Q和祥林嫂都一清二楚吧?

又比如,失传后被还原的中国上古几何,分“点线面体系”五个维度。“点”有大小属性,“线”有粗细属性,故可完美解释独一无二的中国书画艺术,用西方几何的点线理论去解释,无异于盲人摸象。

既然中国的下古数学是“与希腊演绎式数学相并行”的二大主流之一,那么加上赵致生还原的上古数学,则中国的古代数学就应该是人类古代数学的主流。又∵数学是百科之母∴中国古代的所有学问(尽管因上古数学的部分失传造成部分缺失),都应该是人类古代文化/文明的主流。李约瑟的《中国科学技术史》可提供旁证。

由此可得一个无比重要的CY(承扬)推论:

承扬中国古代数学特别是承扬上古数学,是纲举目张的千年大计。∵逻辑上讲,所有夏商周文化断代引发的下古学问的缺失,都可通过研究得以有效弥补(纠错立正)——这是个意义极大的系统工程,不但能重构/复兴领先全球的中华基础文化大厦,而且还能为实现人类命运共同体提供无比强大的基础软实力。

比如,赵致生用上古属性数学解读甲骨文汉字的“上古文化密码”,独一无二,妙不可言。行文至此,我突然想到,用上古数学方法论和AI等技术相结合 破解至今认不出的3000多个甲骨文汉字,很可能是个大研究课题。多破解一个字,就多能弄明白一些至今都读不懂的古籍里的字句。

(三)任继愈学术遗言与上古数学

悟性极高的任继愈学术遗言(2009)=中国哲学的出路,在中医学,中医学出路,在中国哲学。

任继愈学术遗言,指向了上面的CY推论(参见拙文《任继愈学术遗言与太九哲学》)。完善中国哲学、中医学、中国其它古代学问的理论武器/方法论/钥匙,只能是上古属性数学。

特别遗憾的是,杨振宁、吴文俊、钱学森、任继愈都不知道赵致生还原的、属于中华民族和全人类的中国上古属性数学瑰宝,因为主流媒体根本就没有报道/介绍过。

但愿墙内开花墙外香不再重演!

(四)中国古代数学可以大大促进人类第四次工业革命

华为领跑的5G技术的普及,拉开了人类第四次工业革命的序幕。AI是主角。

在AI科研方面,正“时尚”着文理多学科交叉研究,必须承认,美国走在最前面。

2010,美国资深投资家尼古拉斯·博古睿在洛杉矶成立博古睿研究院(独立无党派智库),致力于将各个文化学科中最顶尖的学者汇聚一堂,探讨科技、管理和哲学问题——还给哲学家设了个百万美元的博古睿奖,号称哲学界的“诺贝尔奖”。

20181219,北大成立了博古瑞研究院中国中心(!?),20203,出了一本《智能与智慧:人工智能遇见中国哲学家》的书。(如果中国哲学家经过了上古属性数学的洗心革面,那结果……)

2019看过一新闻,美国斯坦福大学李飞飞教授领导的AI研究课题,其研究人员,都是美国理工科和文科领域里最顶级的专家。

由此推断,中国上古数学可以大大促进人类第四次工业革命。

如果中国的自然科学家、社会科学家、人文科学家同时掌握了中西方二种数学里最基本的方法论,一定会如虎添翼!真掌握了,中国科学家的创新成果就会层出不穷;中国的大学就会逐渐成为全世界青年向往的圣地;人类命运共同体就会吸引住越来越多的地球人……

综上述,中国古代数学亟待承扬!希望体制内的某个著名科研单位/中国的伟大企业家发起成立中国古代数学研究院(跨学科超级智库),对任继愈学术遗言等N多重大问题展开科学研究。

这是中国的千年大计,也是人类的千年大计。

创立者当然会名垂青史,远不止此……

文章转载自网页链接。

  LZ分好多啊,我给你写一个

  从我国第一部数学著作,九章算术开始,中国的数学事业,便蓬勃的发展。算筹,割圆术,杨辉三角等等发现或者理论,祖冲之,秦九韶等数学家,都为中国在世界数学史上增辉添彩,许多数学理论,都领先外国多年。但是中国传统数学,有一个明显的特点,就是数学著作都以社会生产和生活实践中的问题为纲,这些问题基本按社会、生活领域进行分类,过分重实用,不利于抽象概念和命题的形成。而且,中国传统数学始终置于政府控制之下,直接受制于统治阶级的意识形态和社会的需求,特别的,明代封建统治者的政策不利于数学发展。这些都导致后期中国数学发展缓慢,无法与世界接轨。

  至于中国近现代的数学发展,1919年五四运动以后,中国近代数学的研究才真正开始。这期间,浮现了诸多伟大的数学家,苏步青,赵元任,他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。从北大1912年成立时建立的数学系起,中国各地的数学教育日渐成熟,培养了许多数学领域的人才,在诸多领域都取得了伟大的成就(PS:具体LZ自己百度一下吧,很容易的,太长了)但是值得注意的是,自从改革开放,中国的经济实力不断增强,与外界的合作也日渐增多。但是,这给人们带来的功利,浮躁心理,也不容忽视。试看现在中国的数学教育,人人都在搞竞赛(虽然现在国家限制),各种培训班培养出来的,很多都是没有兴趣的做题机器,这种人,是很难在数学领域有所长足发展的。

  中国在不断强大,我们新一代的年轻人,要有理想,不能急功近利的只关注高收益的学科与专业,更应注重基础学科的发展,一个国家的科技水平,不仅体现在工业领域,基础理论也是科学不可分割一部分。纵观中国的数学发展史,不管时代如何,代代都有才人出。希望,中国的数学,将会在我们这一代,有长足的发展,不要让中国悠久的历史,在我们这一代蒙羞。

  嘿嘿,瞎写的,不好不对,别喷我

  紫色的港湾团队,精诚为您解答,欢迎批评指正,我们共同进步。

⑴以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。

⑵具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。

⑶寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。

10、中国数学对世界的影响

数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。

中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。

1、勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580—前500)550多年。

2、负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。

3、最精确的圆周率:31415926<π<31415927。南朝的祖冲之继承了刘徽的工作,求出了精确到七位有效数字的圆周率,这一结果的得到,相当于应用算筹对九位数字的大数目进行各种运算(包括开方)130次以上,其劳动量之大是可以想象的。为了计算方便,祖冲之还求出了两个用分数表示圆周率的数据,一个是,称密率,这是分子、分母在一千以内表示圆周率的最佳渐近分数;另一个是,称约率。祖冲之求得的圆周率数据,远远地走在世界的前面,直至1000年后,阿拉伯数学家阿尔·卡西于公元1427年,法国数学家维叶特于公元1540—1603年间,才求出更精确的数据。

  中国古代数学辉煌史

  中国古代数学的萌芽

  原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的

  陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。

  西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址

  的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具

  。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。

  商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用

  十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴

  、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。

  公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、

  股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记

  数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。

  春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发

  展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。

  战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家

  认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(

  无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,

  万世不竭”等命题。

  而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、

  方、平、直、次(相切)、端(点)等等。

  墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限

  分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。

  名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果

  。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。

  中国古代数学体系的形成

  秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,

  它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。

  《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是

  世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、

  盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(

  特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发

  展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。

  《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来

  的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。

  这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固

  封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战

  国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合

  的数学问题及其解法,这与当时社会的发展情况是完全一致的。

  《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十

  进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的

  发展。

  中国古代数学的发展

  魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析

  义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注

  ,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代

  数学体系奠定了理论基础。

  赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充

  的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图

  证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式

  ,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。

  刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的

  数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他

  的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程

  中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率

  为 157/50和 3927/1250。

  刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问

  题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。

  东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数

  学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他

  们的数学工作主要有:计算出圆周率在31415926~31415927之间;提出祖(日恒)原理;提出二次与三次

  方程的解法等。

  据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这

  个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在

  圆周率计算方面,比西方领先约一千年之久;

  祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其

  任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理

  ,解决了刘徽尚未解决的球体积公式。

  隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木

  工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不

  用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础

  。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。

  唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李

  淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂

  的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经

  》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算

  学家创立了二次函数的内插法,丰富了中国古代数学的内容。

  算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹

  速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和

  珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优

  点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横

  列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。

  唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书

  书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运

  算,它既适用于筹算,也适用于珠算。

  中国古代数学的繁荣

  960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术

  突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第

  一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。

  从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,

  刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章

  算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学

  的高峰,其中一些成就也是当时世界数学的高峰。

  从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九

  章算法纂类》中载有贾宪“增乘开平方法”、“增乘开立方法”;在《详解九章算法》中载有贾宪的“开

  方作法本源”图、“增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发

  现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的

  帕斯卡三角形早提出600多年。

  把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中“田亩比类

  乘除捷法”卷,介绍了原书中22个二次方程和 1个四次方程,后者是用增乘开方法解三次以上的高次方程

  的最早例子。

  秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次

  数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种

  类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母

  ,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二

  位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多

  年。

  元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在“缀术推星”

  题、朱世杰在《四元玉鉴》“如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的

  内插公式。

  用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号

  ,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。

  从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今

  ,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。

  朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各

  次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,

  其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然

  后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这

  是线性方法组解法的重大发展,比西方同类方法早400多年。

  勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形

  的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个

  容圆公式,大大丰富了中国古代几何学的内容。

  已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解

  球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、

  沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个

  推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。

  中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算

  术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已

  出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元

  代。

  宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,

  数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义

  。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,“通神明”的数学是不存在的,只有“经世务

  类万物”的数学;莫若在《四元玉鉴》序文中提出的“用假象真,以虚问实”则代表了高度抽象思维的思

  想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑

  是促进数学发展的重要因素。

  中西方数学的融合

  中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考

  试制度。在这种情况下,除珠算外,数学发展逐渐衰落。

  16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战

  争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初

  ,近代数学研究才真正开始。

  从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言

  杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭

  必需用品列入一般的木器家具手册中。

  随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀

  ;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱

  载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大

  位的著作在国内外流传很广,影响很大。

  1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《

  测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在

  他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学

  说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同

  时介绍进来。

  在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分

  数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不

  当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。

  其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大

  测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方

  法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有

  这些,在当时历法工作中都是随译随用的。

  1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤

  柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对

  数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。

  后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中

  通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。

  清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书

  辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中

  的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现

  了生机。年希尧的《视学》是中国第一部介绍西方学的著作。

  清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。

  1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。

  1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负

  责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面

  几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等

  数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。

  综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果

  ,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。

  雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不

  能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主

  的乾嘉学派。

  随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有

  框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝

  而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独

  立得到的。

  与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从

  黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍

  西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一

  手的原始资料,在学术界颇有影响。

  1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学

  。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织

  翻译了一批近代数学著作。

  其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《

  代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;

  谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。

  《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译

  本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但

  所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。

  在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖

  锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思

  想的研究成果。

  由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下

  ,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的

  研究才真正开始。

数学家高斯小时候的故事

从一加到一百

高斯有许多有趣的故事,故事的第一手资料常来自高斯本人,因为他在晚年时总喜欢谈他小时后的事,我们也许会怀疑故事的真实性,但许多人都证实了他所谈的故事。

高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。

高斯常常带笑说,他在学讲话之前就已经学会计算了,还常说他问了大人字母如何发音后,就自己学着读起书来。

七岁时高斯进了 St Catherine小学。大约在十岁时,老师在算数课上出了一道难题:「把 1到 100的整数写下来,然后把它们加起来!」每当有考试时他们有如下的习惯:第一个做完的就把石板〔当时通行,写字用〕面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完后,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最后,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然后就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

欢迎分享,转载请注明来源:浪漫分享网

原文地址:https://www.hunlipic.com/lianai/11014197.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-11-20
下一篇2023-11-20

发表评论

登录后才能评论

评论列表(0条)

    保存